OWASP Top 10 Risk & Mitigations for LLMs and Gen AI Apps 2025

  • OWASP Top 10 for LLMs (2025) addresses evolving threats in AI security
  • Prompt Injection Vulnerability: Manipulates LLM behavior, mitigation includes prompt safeguards
  • Data Sanitization: Scrub sensitive info, strengthen input validation, limit data access
  • Federated Learning: Use decentralized data, adopt differential privacy
  • User Education: Train safe interactions, promote transparent data policies
  • Supplier Validation and Secure Model Integration are crucial for supply chain integrity
  • Data Poisoning: Manipulate datasets to introduce vulnerabilities, use poison detection techniques
  • Improper Output Handling: Validate LLM outputs, prevent XSS, CSRF, SSRF
  • Excessive Agency: Prevent harmful actions triggered by LLM outputs
  • System Prompt Leakage: Avoid exposing sensitive info through LLM instructions
  • Vector and Embedding Security: Risks in RAG implementation, misinformation, and overreliance
  • Unbounded Consumption: Risks of excessive model inferences, enforce input validation and rate limiting

私の考え: AIの進化は多くの産業で革新的な機能をもたらしていますが、それに伴いセキュリティ上の課題も増加しています。OWASP Top 10 for LLMs (2025)は、これらの新たな脅威に対処するための重要なガイドラインです。プロンプトインジェクションやデータ汚染などの脅威に対処するためには、適切な対策や教育が必要です。今後もAIシステムのセキュリティは重要性を増すでしょう。

元記事: https://securityboulevard.com/2024/12/owasp-top-10-risk-mitigations-for-llms-and-gen-ai-apps-2025/